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ABSTRACT

Humans can perform many complicated tasks without explicit rules. This inherent and

advantageous capability becomes a hurdle when a task is to be automated. Modem

computers and numerical calculations require explicit rules and discrete numerical

values. In order to bridge the gap between human knowledge and automating tools, a

knowledge model is proposed. Knowledge modeling techniques are discussed and

utilized to automate a labor and time intensive task of detecting anomalous bearing wear

patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump

(HPOTP).
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Chapter I

INTRODUCTION

Imagine a futuristic house without mundane chores: no more mowing, weekend

car maintenance, plumbing repairs, etc. Imagine an automated system that performs all

these dreaded chores with a push of a button. What a great dream!

To appreciate the intricate processes for automating these chores, let's look at a

fairly simple task that many of us perform, for example, mowing. Mowing may seem

like an innocuous task, but it involves many complicated design issues. One design issue

involves path planning, i.e. how to efficiently cut the desired area without leaving uncut

patches. The path planning should incorporate collision avoidance and terrain

management. Object recognition should be implemented. How does a mower identify

different debris and objects, and then make a decision to mow right through the object

or to avoid the object? How does it compensate for uneven terrain with pot holes and

severe slopes? This example illustrates complexities of an automated task. Even a simple

task such as mowing takes extensive efforts to automate.

However, if the difficulties of automation can be overcome, the benefits can be

enormous. Cost reductions and time savings can be achieved. Human operators can be

freed from mundane labor-intensive tasks.

This document lays out a theoretical background on knowledge modeling.

Specifically, this document deals with techniques that could be used to automate tasks

that are currently performed manually by human operators. A knowledge model is

proposed, and a series of techniques are discussed for automation. Based on knowledge

models and techniques, an automated data analyzer is implemented for the Space Shuttle

Main Engine (SSME) vibrational data.
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Chapter 2

BACKGROUND

A. Definition of Knowledge

In this document, a definition of knowledge is proposed from the perspective of

a knowledge acquirer, a person who gathers information from experts. By use of the

definition, a knowledge model is developed and implemented.

If a task is performed with a conscious intention, then it is said that knowledge is

available for the task. If a person hits a golf ball with an intention of hitting the ball,

there is available knowledge for the hitting task. If a person hits a ball accidentally off

the tee, then there may not be knowledge available for the mishap. If the available

knowledge can be described in any physical means, written, demonstrable, verbal, or

other means, then the knowledge is defined as accessible. If the knowledge is

subconscious and cannot be described, the knowledge is said to be inaccessible.

Accessible knowledge can be further divided into explicitly accessible and implicitly

accessible. Explicitly accessible knowledge can be executed by other humans, computers,

and devices with the exact same results. Implicitly accessible knowledge results in similar

outcomes when performed by different operators.

Knowledge<

Inoccessible

Accessible <

Explicitly Accessible

Implicitly Accessible

Figure 2.1 Knowledge Definition



Forexample,themultiplicationtablerepresentsexplicitly accessibleknowledge.
Writtenmusicalnotesarealsoexplicitly accessibleknowledge.Theseare explicitly

accessiblesincethesetasksusingthis knowledgewill resultin exactlythesameresults.

Twotimesfive is ten.Whetheracalculatorperformsthetask,or anindividualdoesit, the

resultshouldbe thesame.If a pieceof musicscoreis copied,theexactsameresultsare

achieved.A quarternotein C will becopiedontoamusicsheetasthesame.
However,therealworld is not multiplesof integersor a seriesof quarternotes.

Therealworld rarelycanbemodeledusingexplicit notationsandformulas.Implicitly

accessibleknowledgedescribesalarge domain of human knowledge. Implicitly

accessibleknowledge,whenexecuted,resultsin similaroutcomes.Buyingtwo applesat a

grocerystorebydifferentindividualswill resultin similaroutcomes.Ratherthanmaking

a long specificationof exactweight,size,and color, the requirementsare reducedto

havingtwo appleswithoutsacrificingthemainobjective.Drivinga carat 55milesper
hour(mph)impliesdrivinga carat approximately55mph.If theactualspeedwas54.1

or 55.6,in mostcases,theobjectiveis achieved.

Unlike theaboveexamples,somedomainsof knowledgemaynot bc accessible.
Oftenathletestalk of 'feel for the shots'and 'being in the zone.'All these lingoes

describecombinationsof psychological,physiological,andneuromuscularstatesthatare
hardto describe.If a tennisplayerwasaskedto describethefeelof asuccessfultop-spin

forehand,theplayerwouldbc at a lossfor words.In orderto teachanathleteto acquire

thefeel,an instructormayhaveto demonstratethephysicalattributes.A description of

cause and effect may have to be explained as well. This type of knowledge description is

rather indirect in nature. Using indirect characterization such as cause-and-effect and

other attributes, knowledge can be descibed to another individual.

The boundaries of these knowledge classes vary based on very subjective criteria,

such as the participants' expertise, prior experiences, context, etc. What may seem to be

quite accessible to one person may not be accessible to another person at all. It is also

possible for a certain piece of knowledge to move and become another class of

knowledge. Accessible knowledge becomes inaccessible as the person becomes more

familarized with the task [Kidd, Welbank, 1984].

Humans have an innate capacity to process accessible and inaccessible

knowledge to perform various activities without conscious realization of the processes.

When we perform tasks without conscious realization, it becomes very difficult to

3



develop a link between the human knowledge and machine knowledge. Automation of

manual tasks is feasible when human knowledge can be translated into the computer

domain and language. Then, how do we bridge the human knowlege and the computer

system? The next section proposes some knowlege modeling techniques.

Bo Knowledge Modeling

This section describes the various types of knowledge modeling techniques.

1. Explicit Knowledge Modeling

a. Bi-levcl logic modeling

This is a True/False type of representation. '5.1 is greater than

5.0.' This statement can bc regarded as a True/False statement. There is

an explicit relationship already defined by what is meant by 'greater.'

Furthermore, the statement has a definite truth/falsity assigned to it. A

truth table can bc constructed using bi-lcvel logic.

b. Notational modeling

By using explicit notations (mathematical symbols, musical notes,

etc.), it is possible to model explicitly accessible knowledge. Mathematics

utilizes explicit notations for operators and operands. Musical notes are

also explicitly expressed. A line with the slope 2 and intercept 5 in a 2-

dimensional space can be expressed as 3' = 2x + 5.' This equation of a

line is a representation using explicit mathematical terms.

2. Implicit Knowledge Modeling

One technique to model implicit knowledge is to employ

continuous logic (sometimes called analog logic). Continuous logic can

be viewed as a superset of bi-level logic. In the domain of continuous

logic, knowledge is modeled via pseudo-continuous level mcmbcrship.

One example would be fuzzy logic that models linguistic expression

such as slow,fast, hard and soft. For example, in an expression/It is

raining hard. ', the word 'hard' is understood qualitatively, not with

4



explicit numberssuchas 5.0 inchesper hour. This is consideredan

implicit knowledge representation technique. The meaning of hardness

varies with individual cases, but in this context hard rain is an

understood situation. Analog logic and fuzzy systems allow mapping of

a large sector of human knowledge to numerically definable

representations.

3. Inaccessible knowledge modeling

One modeling technique that is well suited for inaccessible knowledge is

a class of biololgically motivated modeling techniques. These biologically

motivated modeling techniques arc developed based on biological, physiological,

and psychological environments. The most well-known case in the development

of biologically-motivated modeling is Artificial Neural Networks (ANNs).

Artificial Neural Networks are based on artificial neurons which consist of a

summation node and a non-linear threshold function (see Figure 2.2). The

output of the jth neuron, Oj, is

O j = Thr (_I.W.),
n

where Thr is a threshold function.

[1

12 _.Wl

Figure 2.2 Artificial Neuron

Using layers (or slabs) of artificial neurons, an ANN can learn complex non-

linear transfer functions. A typical ANN may look like Figure 2.3.

5
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Figure 2.3. Artificial Neural Networks

The biologically motivated modeling techniques have been used to classify and

to model many phenomena that are not easily modeled otherwise. For example,

ANN's ability to learn without explicit instruction can bc used to model

inaccessible knowledge.
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Chapter III

PROBLEM STATEMENT

A. Selection of Test Case

In order to implement an automated system and to prove feasibility, a set of

criteria was determined to select a candidate system. These criteria were:

Real Case - The test should be based on a real application, not simulation

alone.

Human Knowledge Availability - There is existing human knowledge or

experts in the field.

Data Availability - Data is readily available for tests and verification.

Potential Benefits - Benefits can be realized in the near future and can be

proved to enhance existing approaches.

Feasibility - The task should not rcquire inordinate cost and time.

Two cases were investigated for its potential benefits. One was a

keyboard entry device using Electroencephalogram (EEG) data. This type of

device could be used for quadriplegics. However, data acquisition using human

subjects became questionable. Furthermore, the need for a fairly complicated

data acquisition unit was another deterrent. The second candidate was Space

Shuttle Main Engine (SSME) diagnostics. This scemed to fit all criteria well.

There is human expertise available, yet the expertise has been very difficult to

document and to automate. A massive amount of engine data is available locally

"at NASA/Marshall Space Flight Center via computer network. Furthermore,

automating such tasks can result in significant reduction of man-power and time.



B. SpaceShuttleMainEngineDiagnostics

1. Background

During the developmentof the SpaceShuttle Main Engine
(SSME),significantprogresshas beenmadein both NASA and the

aerospacecommunities in improving the diagnostic evaluation of high

frequency dynamic data. Fast and reliable evaluation of such data is

crucial to the Space Shuttle Operations program for preventing

catastrophic engine hardware failures; moreover, reliable diagnostic

evaluations can extend scheduled maintenance intervals of major

components such as the high-speed turbopumps. Dynamic assessment of

the SSME is very. challenging due to the computational and manpower

intensive nature of the data acquisition and signal processing operations.

Furthermore, the acquired dynamic signatures taken from various

locations throughout the engine system can be very complex to analyze.

Current SSME dynamic data processing and evaluation arc performed

post-flight or following ground test with a typical diagnostic tumaround

time of approximately one day. This primary evaluation can be

improved upon significantly by automating manual analysis tasks.

One such task involves the evaluation of SSME High Pressure

Oxygen Turbopump (HPOTP) dynamic data for bearing distress

frequency content. The primary failure mode for HPOTP bearings is

uneven ball wear, and the existence of cage frequency components in

HPOTP is used to detect the characteristic bearing defect. Searching for

cage frequency is difficult due to the character of the SSME HPOTP

dynamic environment as sensed by the externally mounted

accelerometers and strain guages. Analysts must frequently contend with

structural, combustion, and electronically generated noise which mask

the cage indicators. Also, feedthroughs from the other three SSME

turbopumps must be considered. When wear indication is observed by

the externally mounted transducers, substantial ball wear has already

taken place. Therefore, any indication of bearing cage or cage harmonic

frequency content in SSME HPOTP dynamic data is justification for

removing the unit from the flight inventory.

Spectrograms, commonly referred to as waterfall plots, are often

used to detect cage frequencies in high frequency dynamic data



channels.Thecagefrequency,alongwith subsequentharmonics,reflect
nonuniformbearingrolling elementdiameters[Hine,1989].However,

monitoredHPOTPdynamicdatachannelsfrequently contain several

other discrete and random narrow-band components which can coexist

or mask predicted cage frequency signal content, synchronous

frequency (SF), i.e., fundamental rotor speed, and its harmonics along

with structural and hydrodynamic signals contribute to the noise.

Decisions made by analysts are determined by their ability to

distinguish anomalous cage frequencies. Locations of cage and

synchronous frequencies, and their relations to the thrust level changes

are understood by analysts based on past experiences. An analyst may

look for cage frequencies without complicated numerical computations

by simply scanning the hard copies. Occasionally this type of subjective

decision making results in differences in opinions among analysts.

2. Preliminary Analysis

To further illustrate the decision proccss, two cases of actual

engine data are presented. The first case is data with anomalous cage

frequency as shown in Figure 3.1, where the x and y axes denote

frequency (in Hz) and time (in frame counts) respectively. The cage

frequency is determined by a method described as below:

Inspecting the plot at approximately 450 Hz, one can locate a series

of very prominent peaks. These peaks are the representation of the

synchronous frequency (SF). The SF is used to find cage

frequencies. 2C (2nd harmonic cage frequency) is found as a series

of peaks between 390 Hz to 410 Hz (approximately 2 x 0.43 x SF).

[McFadden, Smith, 1983]. As the thrust level changes, SF changcs in

proportion. The peak train at approximately 590 Hz is feedthrough

from the High Pressure Fuel Turbopump, and can sometimes be

confused for 3C (3rd harmonic cage frequency) data.
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Frame Count

(1 frame--0.4sec)

p2485w14 gain=20 May 13, 1993

400

3OO

20O

100
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Frequency
(Hz)

Figure 3.1 Anomalous Case (2485w145)

The second case, as shown in Figure 3.2, is a nominal case. A

similar procedure is used to determine its health. The SF is located and

cage frequency is searched for. Unlike the abnormal case, there are no

consistent peaks that wiry with the SF. The stone pmceclure is repeated to

find the harmonics of the cage frequency. This case is found to have no

anomalous peaks at any cage frequencies.
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Figure 3.2 Nominal Case (2495w145)
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Chapter IV

IMPLEMENTATION AND RESULTS

The knowledge definition and the classification given above allow a coherent

method to manage human expertise and to automate the expertise. Using this definition

of knowledge, human expertise described in the problem statement, Section 2 of Chapter

III, can be classified in the following manner.

Explicitly Accessible Knowledge:

Discrete Fourier Transform

Implicitly Accessible Knowledge:

Location of the synchronous frequency and its harmonics,

Location of the cage frequency and its harmonics,

Thrust level and its affects on synchronous frequency.

Inaccessible Knowledge:

Detection of anomalous peaks in spectral plots.

Further analysis of the human expertise allows a breakdown of tile task into

smaller and simpler sequential tasks as shown in Figure 4.1.



Convert Time Domain Data to Frequency Domain

I Find Synchronous Frequency (SF) I

Estimate Cage Frequency and harmonic locations

I Detect Peaks I

Make Decision 1

Figure 4.1. Sequential Breakdown of the Expertise

Twelve data files were provided by the Structural Dynamics Laboratory at

Marshall Space Flight Center. These time-domain binary files contained vibrational

engine data sampled at 10,240 Hz.

A. I_iscrete Fourier Transform

The Discrete Fourier Transform defines the relationship between the time

domain data and its representation in the frequency domain. The definition of the

Fourier transform of a continuous signal x(t) is defined as:

X(f) = F{x(t)} = I x( t )exp(-j2 _ft )dt
--00

13



The inverse transform is defined as:

x(t) = F -1 {X(f)} = _X (f ) exp(j2 nft )df

These valuable relationships deal with continuous infinite length and infinitely

many harmonically related complex exponentials. These relationships can be extended

to sampled data. For a sequence of data that is uniformly sampled, The Discrete Fourier

Transform can be used efficiently. For Discrete Fourier Transforms (DFT), the following

equations are used:

N-I

Analysis Equation: X[k]= 3". x[n]W _"
N

tl=o

N-I

Synthesis Equation: x[n] = (1 / N) _ X[k]W -_"
" N

k=O

where WN = e -)(2xlN)

The relationship between-frequency resolution, df, size of frame, N, and

sampling time interval, dt, is defined as:

df= 1/(Nxdt)

Since the engine vibrational data is sampled at 10,240 Hz, in order to achieve df = 2.5

Hz, the frame size, N, is set to 4096.

B. Determination of Synchronous Frequency

The synchronous frequency (SF) plays a very important role since cage

frequency locations are estimated using SF. Assuming that SF exists, one way to find the

SF is to look for the maximum. However, typical cases have shown that the problem is

not simplistic. Two problems arose: 1. Due to discretization error, the SF seemed to

fluctuate about the expected value, 2. In some cases, SF does not manifest itself for a

duration of time due to very high noise level. The two problems mentioned above are

illustrated in Figure 4.2.

14
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Figure 4.2 Typical Error in Finding Synchronous Frequency

The lack of synchronous response is overcome in other SSME pumps with the

use of dedicated speed transducer channels which utilize magenetic pickup type

technology. Unfortunately, the SSME HPOTP speed transducer was not included in the

engine design due to the high dynamic pressure environments scen at the pump inlet.

Discretization errors, which are often manifested as small transient pcaks, can be

minimized by using various digital filters, for example, averaging or the Butterworth low

pass filter.

For the second case, as shown in Figure 4.2, when the SF is not well defined,

further investigation is needed. Figure 4.3 displays the first 20 frames of 2485w145. The

SF is not well established in the first 10 frames, thus creating incorrect maximum indices.

One method of dealing with the lack of definition is to ignore the engine data until an

obvious SF is found. This method can be used only if it is assured that SF is found for

most of the cases. This 'ignore-if-not-sure method' was not considered sincc loss of

information may be too great when SF is not manifested for a significant duration. An

alternate set of algorithms are investigated to deal with the ill-defined area. Two such

algorithms take into consideration the analysts' apriori knowledge of the SF: Credibility

and Correlation.

15
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Figure 4.3 Ill-defined Synchronous Frequcncy(2485w145)

1. Credibility Filtcr

The first approach deals with credibility of a data point using a simple

credibility filter. A set of credibility filters is constructed based on the analysts'

experience. A set of trapezoid filters is generated. The center of the trapezoid

filter is defined by a priori knowledge. As a data point falls away from the

center, the data point becomes less credible. As the data point gets closer to the

mean, the better credibility the data point will have. A series of trapezoid

credibility filters were defined as shown in Figure 4.4.

credibility

1.0 1
I

I

1

0.0 t_ _

- /.,_,.\ -

mean

Figure 4.4 Credibility Filter.

Data
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The credibility is defined as follows:

CR=
I 1.O if ABS(Mean-data) =< O.IW

0.0 if ABS(Mean-data) > 0.5W

1-(5/2W)(ABS(Mean-data)-O.lW) otherwise

where W is the width of the filter,

Mean is the mean of the filter,

ABS is absolute value.

Using a linear model, based on an empirical model, a set of predicted SF

is calculated based on the thrust level schedule (Figure 4.5). The predicted SF is

used to construct a series of credibility liltcrs as shown in Figure 4.6.

Thrust
Leve

(%)
110

104

100

Figure 4.5 Example of Thrust Level Changes

Elapsed
Time

(sec)
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Sync
Fre¢

(Hz)

Elapsed
Time

(sec)

Figure 4.6 Two-dimensional Credibility Filter with Moving Mean

After credibility of each data point is determined, a simple rule is

implemented: The less credible a data point is, the more important the a priori

information is. As the data point becomes more credible, the less dominant the a

priori knowledge is. This rulc implementation is illustrated as Figure 4.7.

_- Measured "_

Max Index J_

F I

tf Estimated _.
I Max Index I
k,,. (apriori) J

New Index

Figure 4.7 Credibility Implementation
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Using the credibility filter with W=10, the results are shown as below in

Figure 4.8. It seemed that the level of the high pressure fuel turbo pump was as

high as the SF such that maxima found fluctuated between the level of SF and

the high pressure fuel turbo pump. Figure 4.8 illustrates a case where a

credibility filter effectively eliminated erroneous information. Figure 4.8.a is a

plot of maxima found. By comparing against the expected SF, a credibility plot

is generated as shown in Figure 4.8.c. Finally a new set of SF is found. The

absolute value of the difference between the expected values and the processed

values is shown in Figure 4.8.e.
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Figure 4.8 Credibility Filter Results (1595ht135)
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Even though the credibility filters were effective for many of the cases,

some data files resulted in less than satisfactory results. Two factors contributed

to the poor results: One reason was that a linear model deviated significantly

from the actual data. It seemed that the linear model used to calculate the center

of the trapazoid filter was not accurate. This model error resulted in low

credibility, thus causing a large compensation in the SF level, which became

another source of error. Another drawback in the credibility filter was its

inability to remove discretization error. Discretization error, which is manifested

in the form of small transient noise, maps into a credibility value approximately

equal to the noiseless signal. In order to minimize this type of erroneous

reasoning, more elaborate decision criteria had to be implemented.

2. Correlation

The second approach to find SF considered an overall shape of the

expected SF and the found SF. Pearson's r [Weaver, 1983] is used to determine

the correlation between the found SF and the expected SF. If linear correlation

exists, then a new SF is generated based on the expected SF and the actual data

(see Figure 4.9.).

Find Maxima ._

Calculate Correlation Coefficients _1_

(
Find an alternate"_

Synchronous |

Frequency ..,)

Refine Expected Synchronous Frequency ._

Figure 4.9 Flowchart: Synchronous Frequency using Correlation
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By useof Pearson'sr coefficient, correlation coefficients of two sets of

parameters are found (see Equation 4.2.1). Its linear correlation threshold varies

with the sample size. For a set of data pairs, {(x,y)}, whose mean and standard

deviations are /,t, o" respectively, Pearson's r is defined as :

_-, (bt,- x,)(U,- Y,)
r

L_
.... (Equation 4.2.1)

[Weaver, 1983]

linear

correlation

-1.0

I

no linear

correlation

0.0

decision points

linear

correlation

+1.0

I

Figure 4.10 Linear Correlation Regions

Decision points are given in absolute values, and the value is inversely

related to the size of samples. An example is given in Table 4.1 (Weaver, 1983).

For example, with the sample size of 100, the decision points are +/- 0.196 with

95% confidence [Pearson, Hartlcy, 1966].

SampleSize

5

10

DecisionPt SampleSize

20

DecisionPt

0.878 0.444

0.632 50 0.279 100

SampleSize DccisionPt

80 0.220

0.196

Table 4.1 A Guide to Use Pearson's r Coefficient [Weaver, 19831

An algorithm to use the correlation coefficients is described as follows:

1. Find the potential SF by using the maxima function.
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2. Compare the found SF against the thrust level schedule.

3. If the found SF and expected SF are linearly correlated, then find a
multiplication factor using Equation 4.2.2.

N
k = 1,_ Lf¢i)

N _=1Le(i)
(Equation 4.2.2)

where Lf(i) is the ida thrust level found, and Le(i) is the ith expected thrust level.
The multiplication factor, k, is an average of ratios of expected and found values
during constant power thrust levels.

If they are not linearly correlated, use alternate methods, such as credibilility
filters to find another candidate. Continue until a suitable candidate is
found.

4. Multiply k by the expected thrust level to acquire a new SF.

This method is simple to implement and proved to be less noisy than the

credibility method. The correlation / linearization method seemed to create clean

peaks on the 3-D plot. A typical example is shown in Figure 4.11.

Raw SF (maxima found)

40 ....,
30_

0 100 200 300
frame

Newer and Better SF

40
/ I

30
0 100 200 300

frame

Expected SF of 2495htl 3 & VIN9309

45 :.....

40
0 1O0 200 300

frame

Figure 4.11 Correlation Coefficients Results

(2495ht135)
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3. Cage Frequencies

The approximate location of the second harmonic cage frequency, 2C, is

found by multiplying the Synchronous Frequency by a factor of 0.86 (=

2x0.43) which is found based on bearing symmetry. In most cases, up to 7C can

be investigated. For simplicity, 2C and 3C are included in each file for testing.

Since the Synchronous Frequency is determined in terms of indices as described

in Section 2, Chapter 4, cage frequencies are derived in terms of indices as

follows:

Definition:

SFi as the index of SF,

2Ci as the index of 2C,

3Ci as the index of 3C,

StF as the start frequency of a data file in Hz,

SF as the Synchronous Frequency in Hz,

df as the frequency resolution in Hz,

2C, 3C as the two times and three times the cage

frequencies respectively in Hz.

The first index is l.

Frequency index, Fi, can be expressed in terms of frequency, F, and StF,

F= (Fi- 1) xdf+ StF ............................. (I)

By definition,

2C =2x0.43 xSF

substituting in SF in place of F using (1),

= 0.86 x ((SFi - 1) x df + StF) ............ (2)

Then 2Ci = (2C - StF)/df + 1

substituting in equation (2),

= 1/df x (0.86((SFi-1) x df + StF) - StF) + 1

= 0.86SFi - (1-0.86)/df x StF - 0.86 + 1

= 0.86SFi - 0.14/dr x StF + 0.14 ........... (3)
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By the same method,

3Ci = 3 x 0.43 x SF reduces to

= 1.29 x SFi + 0.29/df x StF - 1.29 + 1 ..... (4)

Actual values of 2Ci and 3Ci are the closest integers to the calculated

values. For example, if a file starts at 375 Hz, where the index is 1, and SFi is

determined to be 35 ( or 460 Hz) with a frequency resolution of 2.5 Hz, then

2Ci = 9 ( or 395 Hz),

3Ci = 89 ( or 595 Hz).

Using equations (3) and (4), locations of the expected 2C and 3C are found as

shown in Figure 4.10.

_1oo
._o
13
._=90

80

7O

60

5O

40

30

2o

10

3C indices 7

SF indices U

__ . 2C indices y

I I I I I

50 1O0 150 200 250

frame numbers

I

3OO

Figure 4.10 446HT45 SF, and expected 2C/3C indices

(Raw data without filtering)
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D. Anomaly Detection

1. ANN Approach

To detect anomalous peaks, Artificial Neural Networks (ANN) are

developed. Various configurations are considered to optimize the design. Several

tests using various ANN configurations were performed to find an optimal

configuration. Most of the tested cases used a frequency resolution of 2.5 Hz

since this frequency resolution value is most often used by analysts. One case

used 1.25 Hz case. For the neural network training, MatLab (MathWorks, Inc.)

and NETS (NASA Johnson Spacc Ccnter) were used. Both of thcse software

tools utilize the back-propagation algorithm for training.

a. Initial Training and Propagation Results

The input to the ANN consisted of thirteen points centered about

the expected cage frequency. To generate a training set for the neural

networks, two approaches were considcred. The first approach was to

make a manual decision on each individual frame of a data file. This

approach was done by manually examining cach framc of data to see if

an obvious anomaly existed. Understandably, this approach required

considerable manpower and patience to gcncrate a sufficiently large

training set. This approach involved manually labeling normal and

abnormal framcs. First of all, an anomalous data file, 2485PB45, was

chosen. The file was normalized between 0 and l, and a decision was

manually made by a human operator on each frame. Decision

assignment was 0.9 for nominal, and 0. 1 for anomalous frames. This task

was quite subjective, and at times proved to be very difficult to determine

its assignment. There were many cases where the decision of

anomalous/nominal was very difficult. However, it was assumed that if

'enough good information' is given to the neural network, the network

should be able to learn the desired patterns. A total of two hundred and

seven frames were individually evaluated and tagged. Seven artificial sets

were added to accentuate the importance of the middle of the frame.

Over all, the training file included 149 anomalous frames and 58

nominal frames. The neural network consisted of 13 input neurons, 8
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hidden layer neurons, and 1 output neuron. After several iterations, RMS

error was reduced to 0.11, and the training was halted. The training set

was used to verify the leaming. The results were almost inconceivable.

Out of 207 frames, there were only 2 errors. This accurate mapping

seemed surprisingly good due to the subjective nature of the manual

decisions. However, good training did not seem to translate to a better

design. When tested using other files, this network failed. It seems that

the network has learned some specific idiosyncrasies about the training

set, and the learned behavior was not able to generalize. This conclusion

was verified further by re-examining the training file. One of the

artificial frames was mistakenly labelled wrong, and the neural network

mapped this frame just as it was trained. This ability to converge to the

training set was impressive, but the lack of generalization was of serious

concern. More tests will be required to characterize this behavior using

larger sets of training data.

The second approach was selecting one data file with nominal

data and another data file containing anomalies. Then each file is tagged

as normal (0.9) and abnormal (0.1). The objective of this approach was

to see if the ANN could learn by itself the inherent distinction between

normal and abnormal cases. This approach to label each data file as a

whole must contain 'enough good information.' On many occasions, the

cage frequencies do not appear for the full duration of the test.

Therefore, a subjective decision should be made whether a file include

enough good information.

Due to their inherent properties, ANNs do not lend themselves to

thorough verification. However, it is necessary to have some

understanding of the trained network. A file, 2474wld0, was used to

propagate and to test the trained network using the file labeling. The file

included 13 points centered at the calculated cage frequencies (2C and

3C). The 13 points were normalized such that the lowest value was set to

0, the highest 1. When the data was propagated, the results seemed to be

inaccurate. Defining the correct response to be less than 0.2, out of 250

frames, the ANN found 3 hits for 2C case, and 10 hits for 3C. It was

hypothesized that the reason for the low hits was due to the skewing of

the peaks. Each data set was shifted left one at a time, and 0.5 was added

as the 13th element. The following results were compiled with shifting.
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2C 3C

shift left 0 3 10

shift left 1 3 28

shift left 2 34 15

shift left 3 4 N/A

Table 4.2 Network Testing with Shifts

It became apparent that the trained network was very sensitive about the

position of the peaks.. Using this information, an ANN architecture was

implemented to use rotated input sequences.

b° Artificial Neural Network Design

i. Rotate and Propagate

An artificial neural network with 13 input neurons, 8

hidden layer neurons, and 1 output neuron was trained with two

2.5 Hz files: 446ht13L (anomalous) and 2495ht13L (nominal).

These two files are generated using the Pearson's r and

linearization technique as described in Section B.2, Chapter IV.

Then 3C file from 446ht13 was used for consistent peaks (see

Figure 4.13).
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Figure 4.13 446ht13L file (anomalous) for training
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Figure 4.14 2495ht13L file (nominal) for training



"-'14

10

TO reveal the nature of the training sets, maxima location

of each frame was determined and plotted (Figures 4.15 and

4.16). The nominal training set (2495ht13L) displays even

distribution of maxima whereas the anomalous case (figure 4.16)

has over 70% of its maxima located in the frequency bin #3.

This contrast in peak distribution is used to train neural networks.

0 4

I

I
li !

I
i i I

lO2 12 13

index

Figure 4.15 Maxima Distribution of 2495ht13L(Nominal)
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Figure 4.16. Maxima Distribution of 446t13L (Anomalous)

The training was done using back propagation with various

learning rates. The output assignments were 0.1 for the nominal

case, and 0.9 for the anomalous case, The first training set

consisted of the above two files appended consecutively. Each

file contained 252 time frames with normalized magnitude to

have the maximum magnitude of 1 and minimum of 0. Training

a neural network involves fairly mundane tasks of selecting

transfer functions, hidden layers, transfer functions, etc. Various

learning rates were used ranging from 1 to 0.001. High learning

rates seemed to incur rapid changes, usually resulting in

oscillation, but overall error did not seem to get smaller. It

seemed that a learning rate of 0.01 allowed a reasonable training

point. The transfer function used for this training was the Logsig

function (see Figure 4.17).
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Figure 4.17 Logsig Transfer function
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Figure 4.19 Leafing Rate = 0.01
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One aspect of the learning was of concern. If the neural

network was presented with 252 of the anomalous frames first,

would the network prematurely converge before nominal data

can be presented? Would a mixed training set perform better?

With these questions in mind, 400 frames out of 504 frames were

randomly selected and swapped. Using the same learning rate of

0.01, a new learning was performed. There was a faster reduction

of summed squared error using the randomly swapped input file

(Figure 4.21). And at 1000 epochs, the error was reduced to

approximately 250, as opposed to over 300 for the non-swapped

case. After 2000 epochs the training stopped (See Appendix A

for the weights and biases).

2 t_Vllrll3 tl _T Cr.O O_ _wmo 4OO ¢'_lmH nC_9,t

o!
200 40O 6O0 800 t 000 t 200 _ _-QO t 6(}O _8(3O

EDO¢_

Figure 4.20 Sequential Training

r0 j
Llyar( I 3 8 1 _ ir,,_3 001 no swao 4_28ucJ4

uJ

_=102

U_

101 i
5_0 _OOO 1500 2060 2500

E_CJI

Figure 4.21 Alternate Training

_ooo
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A hit is defined to be a propagated value greater than or

equal to 8.5 and less than 9.5. Initial propagations indicated that

the network was very sensitive to the magnitude and location of

the peaks. For example, when raw data is propagated without

normalization, there were 0 hits. Also when the peaks were

shifted, the results were less than satisfactory. Using these

observations, all data sets were scaled such that the maximum

number in the file would be 1.0. In addition, the 13 data points

were rotated and propagated to find consistent peaks(Figure

4.22). The results are summarized in the Table 4.3.

O O O O O O O • • • O O •

Figure 4.22 Rotatc and Propagate

File Name

1595PB45

1595WL45

1675HT135

1675PB45

1675WL45

2495HT135L

:Training Set

2495PB45

2495WL45

446HT 135

:Training Set

446PB45

446WL45

446WLD0

ANN 2C Hits

21

20

17

5

34

14

11

19

14

19

11

26

ANN 3C Hits

37

5O

13

21

34

148

105

164

123

29

92

17

ANN Decision

max=21,50

max=34, 34

max=19,168

max=26,123

*Experts

Decision

2

2

Note *: Expert's decision is denoted 0 to 5, where 0 represents normal data and 5 represents highly

recognizable anomaly.

Table 4.3 Rotate and Propagate
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Inspectionof theresults,asshownin Table4.3, seemsto indicate
correlationbetweenthepeaksandthehits. A highnumberof hits

representsa consistentseriesof peaks.What did the neural

network learn?Did the network understandthe conceptof

anomalouspeaks?To understand the inner workings of the

neural networks, a test is performed with a known parameter that

assimilates anomalous peaks. It is shown from previous cases that

maximum values seem to represent the prominent peaks, as

shown in figures 4.15 and 4.16. Thus a test is performed to see if

the locations of maxima are correlated with the ncural network

output. Even though the 2495w145L file does not include any

anomalous peaks, the l-de includes consistent peaks (high

pressure fuel synchronous fcedthrough) that can bc used as test

peaks for the neural network. It is evident from tt_e plots (Figure

4.23 ), the trained network correctly identifies maximum peaks

located at the frequency bin #3 (Figure 4.23.i). When the peaks

are shifted right 1 time such that the peaks are now located in the

bin #4, the neural network is able to detect the peaks with some

noise. However, when the peaks arc shifted left, the network is not

able to detect the peaks at all. Since the maxima seem to be at

two discrete levels for this case, two ANN output readings c_m be

made for each index lor better understanding of peak locations

and ANN outputs. Table 4.4 delineates the statistical distribution

of the ANN output. 'Index' column represents an index where

maximum values fall. For example, after 6 shifts (Figurc 4.23.g),

the majority of maxima fall in index 1 and index 12. Mean and

standard deviation is calculated for these two indices and

tabulated. This process is continued until all data has been

tabulated. Inspection of the table seems to indicate close

correlation of the maxima location and the neural network

output.

,,;.,
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Anotherobservationis madeabouttheneuralnetwork.Whenthe

maximais locatedat index#4, theneuralnetworkproducedhigh

output signaling peak detection. This may be due to an
unintendedsourceof error in thetrainingdataset.The training
set 446ht13Lincluded70%of maximaat index 3 and 10%of

maximaat index4. It seemsthattheneuralnetworkhasleamed

to recognizepeaksat location3 as well as 4. The next four

prominent indices (2,10,11,13)in 446ht13L do not seemto

affecttheoutput,whichis adesirablenoiseimmunityattributeof
neuralnetworks.

index shift mean stddv shift mean stddv

1 6 0.0340 0.0091 8 0.0490 0.0183

2 7 0.0310 0.0373 9 0.0425 0.0421

3 8 0.9427 0.0081 10 0.9246 0.0247.

4 9 0.9120 0.0667 11 0.8481 0.0279

5 10 0.0464 0.0192 12 0.0710 0.0340

6 11 0.0881 0.0279 0 0.1206 0.0424

7 12 0.1211 0.0538 1 0.1767 0.0748

8 0 0.5665 0.1082 2 0.4753 0.1030

9 1 0.1080 0.0364 3 0.1377 0.0420

10 2 0.0418 0.0194 4 0.0638 0.0283

11 3 0.3577 0.1002 5 0.3303 0.0998

12 4 0.0465 0.0185 6 0.0682 0.0272

13 0.2753 0.0839 0.2633 0.0840

Table4.4MaximaLocationandANN Output
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Figure 4.23 Comparison of Maxima and ANN Output
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Comparisonof MaximaandANN Output(Cont'd)
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Comparisonof MaximaandANN Output(cont'd)
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Comparison of Maxima and ANN Output (cont'd)
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Comparison of Maxima and ANN Output (cont'd)
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b. Other neural network designs

Two other configurations are designed and tested: 1.

Shift-and-propagate, 2. Peak Detector. In this document a brief

summary is provided for completeness. For further details, refer

to Kim and Kissel [Kim, Kissel, 1994].

Shift and Propagate : A nctwork with 13 input nodes with

varying size of a hidden layer is trained with two 1.25 Hz files:

2485w145 (anomalous), and 2495w145(nominal). For testing, 21

normalized points were selected from each spectral frame

centered at the expected frequency. The first 13 points were

entered into the trained network for propagation. Then the 21-

point data set is shifted left, and 13 points are again input to the

trained network. This continues until the last 13 points of the set

are used for propagation (Figure 4.24). The trained network

performed well to detect 2C peaks.
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Figure4,24ShiftedInputDataSets

PeakDetector: This peakdetectordesignutilizesanassumption

that a definition of 'peak'can be taughtto the artificial neural

network.In orderto achievethis learning,two files, 2485w145

and2495w145,were used.Insteadof providing 13points, the

peakdetectornetworkwasprovidedwith 10 framesof 3 points
from the two files. If therewasan anomaly,the peak would

appearconsistentlyat thesecond(or middle)pointof eachframe

(Figure4.25). In additionto the purelygeometricdefinition of

peak,by providing10framesof data,theneuralnetwasto learn

aboutsubtletiesof anytemporalrelationshipbetweenframes.

i • • OllO • • I• • • • • • • • • • I• • OllO • OllO • • I
frame #1 frame #2 frame #9 frame #10

Figure 4.25 Peak Detection using 10 Frames

The results using the peak detector seemed accurate. This

technique provided not only the number of peaks but the

location of the peaks. For more details, refer to Kim and Kissel

[Kim, Kissel, 1994].
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2. Decision

Until this point, peaks are found using artifical neural networks after

performing data reduction using Pearson's r or analog logic. The next task is to

establish a statistical data base to determine the threshold such that a decision can

be made on the health of SSME turbo pump beatings. One approach can be a

pure peak counter as described above. This approach would require a

tremendous amount of data and time to establish a numerical threshold value. A

better approach is to take into account consecutiveness of peaks. For example, if

three peaks appeared consecutively, how much more meaningful is that data

instead of seeing three peaks that are scattered? Incidentally, engine analysts

employ a similar approach. A series of concentrated peaks are given more

significance than the same number of peaks that are randomly distributed.

Table 4.5 delineates the results of peak counting and consecutive peak

algorithms. The consecutive peak counting algorithm provides ,'m alternative to

examining the anomalous peaks. However, it is not clear from the limited test

cases which algorithm is more effective at this time.
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FileName

1595PB45

1595WL45

1675HT135

1675PB45

1675WL45

2495HT135L

:TrainingSet
2495PB45
2495WL45

446HT135

:TrainingSet
446PB45

446WL45

446WLD0

ANN2C

Hits

21

20

17

5

34

14

11

19

14

19

11

26

ANN3C

Hits

37
5O

13

21

34

148

105

164

123

29

92

17

2Cmax

consehits

2

2

1

2

3

2

3Cmax
consehits

11

11

1
1

2

23

9

164

9

2

3

5

*Expert's
Decision

0

3

Note*: Expert'sdecisionisdenoted0to5,where0representsnormaldata,and5representshighly

recognizableanomaly.

Table4.5Resultsof PeakCounting andConsecutivePeakAlgorithm
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Chapter V

CONCLUSIONS

A definition of knowledge was proposed in this document to provide a

framework to model human knowledge. Knowledge classification was defined as

Explicitly Accessible, Implicitly Accessible, and Inaccessible. Analog logic and ANNs

were effectively used to model a decision process to detect anomalous cage frequencies.

The Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump

(HPOTP) data, sampled at 10,240 Hz from various external locations using strain guages

and accelerometers, were converted to frequency domain data using the Fast Fourier

Transform. In order to reduce the data, analog logic and correlation were implemented

to extract the areas of interest. Credibility filters and Pearson's r were implemented to

construct the Synchronous Frequency from which cage frequency locations were

estimated. This approach was implemented to produce thirteen points centered about

the expected cage harmonic frequency location.

ANNs were trained using the back propagation technique to determine peaks in

the spectral domain. Several configurations of artificial neural networks were tested and

documented. The ANNs seemed to identify peaks correctly to assimilate human analysts'

visual inspection. A statistical distribution of maxima was compared with the results from

ANN propagation to gain insight into the trained network. This statistical distribution

seemed to indicate that the location of the maxima had a strong correlation with the

output of the neural network. The neural network seemed to have learned its mapping of

input and output without explicit instructions.

There are many features that make this type of approach suitable for automation

of manual tasks. Definition of knowledge and modeling techniques allows easier

translation of human knowledge to computerized automation. Analog logic allows direct

translation of linguistic expression to quantitative numbers. ANNs can be implemented

to optimize their self-learning capabilities without explicit instructions. ANNs can be

especially beneficial when human knowledge is difficult to articulate.

Based on this research, the following tasks are proposed to be investigated

further:



• In order to make an automated system, a more advanced type of decision

algorithm is required to take into account the intensity of the peaks,

discrimination of line noise from abnormal data, and past experiences.

• Better definition of 60Hz data and other pertinent information, such as fuel

pump data, should be given to the neural networks so that cage frequency can

be discriminated from other irrelevant data.

46



Appendix A:

Artificial Neural Network Parameters
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SHIFT AND PROPAGATE PARAMETERS

w1 =

CoLumns 1 through 7

(i of 2)

-0. 2205 0. 0255 - 0. 0294 -0.3790 0 . 1606 0. 2493 - 0. 2605

1.4083 -1.7710 -0.8315 0.2501 1.6040 0.9984 - 0.5T_J0

-0.4572 0.3848 0.4565 0.1258 0.3068 0.1800 0.0555

0.7994 -0.1463 0.1157 1.0177 -1.1560 0.1994 1.6783

-0.8600 -0.6219 -1.2588 -0.5633 - 1.2257 -0.1862 -0.8889

-0.4106 0.1560 0.0750 -0.4506 0.1744 -0.2894 -0.1357

0.2012 0.0906 -0.4790 0.0437 -0.9882 0.0499 0.4524

-0._05 -0.1112 0.0090 -1.3214 0.1259 1.4597 -0.6140

0.5324 -0.3947 0.5893 - 0.4454 1.4631 0.6267 1.6365

Cotumns 8 through 14

-0.02T7 -0.3377 -0.5169 0.0042 -0.1252 -0.3800 -0.2069

-1.4170 0.2880 -0.8322 -0.9631 0.6908 0.7943 -0.4423

-0.1385 0.7119 0.0442 -0.2153 0.6068 0.0852 -0.0662

-0.3966 0.2238 1.4413 -0.1822 I. 1730 0.7878 - 1.3708

-0.9446 0.3958 -0.6383 -0.9919 1.4657 -0.2012 -0.5888

0.0522 0.0559 - O. 6805 0.2698 0.0850 -0. 1366 O. 1491

-1.0306 -0.0861 -0.0553 -0.0379 -0.0984 -0.6341 -0.7628

-0.3548 -0.0027 -0.2003 - 1.0442 0.9775 -0. 7228 - 1.2034

-1.3553 -0.3854 - 1.4227 1.7290 0.7316 0.2531 - 1.4900

Columns 15 through 21

0.0392 -0.1468 -0.0198 0.2012 -0.4357 0.0108 -0.0449

-1.0089 -0.4127 - O. 8799 0.5255 -1.0989 -0. 4742 -0.6783

0.2997 0.4256 0.6892 -0.1704 0.8726 -0.0203 0.1180

0.6210 1.0954 -1 . 941_7 0.2896 1.5091 - O. 7880 0.5451

1.0726 -0.2837 - 1.4759 1.5632 - 0.3636 - 1.1859 1.5613

-0.2283 -0.2317 0.4223 0.3896 -0.5429 0.0884 0.0201

-0.2043 -0.2694 -0.1676 0.2632 0.3617 -0.5948 -0.0723

-0.0365 -0.5441 -0.4750 -0.4480 -0.6881 -0.474& -0. 7865

-0.8624 -0.2570 1.2159 1.6124 1.0144 0.3667 -0.7992

COlumns 22 through 28

-0.2602 -0. 1514 - 0.0591 -0.5249 -0. 1001 -O. 06_ -0.3071

-0.7722 -0.4405 -0.4783 0.1422 -0.0324 0.9236 -0.3892

-0.1163 0.4848 0.2:305 O. 1438 0.2732 0.0927 0.3401

1.2312 -1.1187 0.3375 1.6606 -0.0280 0.9444 2.5016

-0.5115 0.2395 1.4807 -0.1937 0.7012 0.4081 -0.:_19

-0.0982 0.1851 0.1720 0.0278 0.1930 0.0812 -0.2950

-0.0676 0.0020 0.4021 -0.0300 -0.5545 -0.5582 0.0947

0.1436 -0.7380 -0.7710 -0.6133 -0.6861 0.9242 -0.5875

0.1552 0.5865 0.4537 0.6174 1.1963 -0.1149 0.8880

Columns 29 through 30

-0.1742 0.2265

-0.6564 -1.1679

1 . 1624 0.2859

-1.2073 0.5666

O. 0228 0 . 9671

O.3395 O.0209

-1.1591 -0.0423

-0.3808 0.3940

-0.9474 -0.5041



SHIFT AND PROPAGATE PARAMETERS (2 of 2)

Columns 1 through 7

-1.1118 -3.5790

Columns 8 throsJgh 9

3.3284 4.1655

-2.1850 -2.9365 3.8081 -1.0371 -2.026_

81 =

0.5335

-0.4086

O. 1243

-0.6208

-0.9886

0.2876

-0.4304

0.2425

1.2105



Appendix B:

Typical Mission Profile File
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VI2321R2(2485) T sch.TXT

An Example Thrust Level Schedule
Test 2485

Time (sec) Thrust Level(%)

0 0
5 100

10 100

10 104
60 104

67 100

80 100

Page 1



Appendix C:

Related Test Results
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Abbreviations and Acronyms

2C

3c

ANN

EEG

HPOTP

MSFC

NASA

SF

SSME

second harmonic cage frequency

third harmonic cage frequency

artificial neural networks

electroencephalogram

high pressure oxygen turbopump

Marshall Space Flight Center

National Aeronautics and Space Administration

synchronous frequency

space shuttle main engine
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